Viewing file: dates.py (35.16 KB) -rwxr-xr-x Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
#!/usr/bin/env python """ Matplotlib provides sophisticated date plotting capabilities, standing on the shoulders of python :mod:`datetime`, the add-on modules :mod:`pytz` and :mod:`dateutils`. :class:`datetime` objects are converted to floating point numbers which represent the number of days since 0001-01-01 UTC. The helper functions :func:`date2num`, :func:`num2date` and :func:`drange` are used to facilitate easy conversion to and from :mod:`datetime` and numeric ranges.
A wide range of specific and general purpose date tick locators and formatters are provided in this module. See :mod:`matplotlib.ticker` for general information on tick locators and formatters. These are described below.
All the matplotlib date converters, tickers and formatters are timezone aware, and the default timezone is given by the timezone parameter in your :file:`matplotlibrc` file. If you leave out a :class:`tz` timezone instance, the default from your rc file will be assumed. If you want to use a custom time zone, pass a :class:`pytz.timezone` instance with the tz keyword argument to :func:`num2date`, :func:`plot_date`, and any custom date tickers or locators you create. See `pytz <http://pytz.sourceforge.net>`_ for information on :mod:`pytz` and timezone handling.
The `dateutil module <http://labix.org/python-dateutil>`_ provides additional code to handle date ticking, making it easy to place ticks on any kinds of dates. See examples below.
Date tickers ------------
Most of the date tickers can locate single or multiple values. For example::
# tick on mondays every week loc = WeekdayLocator(byweekday=MO, tz=tz)
# tick on mondays and saturdays loc = WeekdayLocator(byweekday=(MO, SA))
In addition, most of the constructors take an interval argument::
# tick on mondays every second week loc = WeekdayLocator(byweekday=MO, interval=2)
The rrule locator allows completely general date ticking::
# tick every 5th easter rule = rrulewrapper(YEARLY, byeaster=1, interval=5) loc = RRuleLocator(rule)
Here are all the date tickers:
* :class:`MinuteLocator`: locate minutes
* :class:`HourLocator`: locate hours
* :class:`DayLocator`: locate specifed days of the month
* :class:`WeekdayLocator`: Locate days of the week, eg MO, TU
* :class:`MonthLocator`: locate months, eg 7 for july
* :class:`YearLocator`: locate years that are multiples of base
* :class:`RRuleLocator`: locate using a :class:`matplotlib.dates.rrulewrapper`. The :class:`rrulewrapper` is a simple wrapper around a :class:`dateutils.rrule` (`dateutil <https://moin.conectiva.com.br/DateUtil>`_) which allow almost arbitrary date tick specifications. See `rrule example <../examples/pylab_examples/date_demo_rrule.html>`_.
Date formatters ---------------
Here all all the date formatters:
* :class:`DateFormatter`: use :func:`strftime` format strings
* :class:`IndexDateFormatter`: date plots with implicit *x* indexing. """ import re, time, math, datetime
import pytz
# compatability for 2008c and older versions try: import pytz.zoneinfo except ImportError: pytz.zoneinfo = pytz.tzinfo pytz.zoneinfo.UTC = pytz.UTC
import matplotlib import numpy as np
import matplotlib.units as units import matplotlib.cbook as cbook import matplotlib.ticker as ticker
from pytz import timezone from dateutil.rrule import rrule, MO, TU, WE, TH, FR, SA, SU, YEARLY, \ MONTHLY, WEEKLY, DAILY, HOURLY, MINUTELY, SECONDLY from dateutil.relativedelta import relativedelta import dateutil.parser
__all__ = ( 'date2num', 'num2date', 'drange', 'epoch2num', 'num2epoch', 'mx2num', 'DateFormatter', 'IndexDateFormatter', 'DateLocator', 'RRuleLocator', 'YearLocator', 'MonthLocator', 'WeekdayLocator', 'DayLocator', 'HourLocator', 'MinuteLocator', 'SecondLocator', 'rrule', 'MO', 'TU', 'WE', 'TH', 'FR', 'SA', 'SU', 'YEARLY', 'MONTHLY', 'WEEKLY', 'DAILY', 'HOURLY', 'MINUTELY', 'SECONDLY', 'relativedelta', 'seconds', 'minutes', 'hours', 'weeks')
UTC = pytz.timezone('UTC')
def _get_rc_timezone(): s = matplotlib.rcParams['timezone'] return pytz.timezone(s)
HOURS_PER_DAY = 24. MINUTES_PER_DAY = 60.*HOURS_PER_DAY SECONDS_PER_DAY = 60.*MINUTES_PER_DAY MUSECONDS_PER_DAY = 1e6*SECONDS_PER_DAY SEC_PER_MIN = 60 SEC_PER_HOUR = 3600 SEC_PER_DAY = SEC_PER_HOUR * 24 SEC_PER_WEEK = SEC_PER_DAY * 7 MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY = ( MO, TU, WE, TH, FR, SA, SU) WEEKDAYS = (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY)
def _to_ordinalf(dt): """ Convert :mod:`datetime` to the Gregorian date as UTC float days, preserving hours, minutes, seconds and microseconds. Return value is a :func:`float`. """
if hasattr(dt, 'tzinfo') and dt.tzinfo is not None: delta = dt.tzinfo.utcoffset(dt) if delta is not None: dt -= delta
base = float(dt.toordinal()) if hasattr(dt, 'hour'): base += (dt.hour/HOURS_PER_DAY + dt.minute/MINUTES_PER_DAY + dt.second/SECONDS_PER_DAY + dt.microsecond/MUSECONDS_PER_DAY ) return base
def _from_ordinalf(x, tz=None): """ Convert Gregorian float of the date, preserving hours, minutes, seconds and microseconds. Return value is a :class:`datetime`. """ if tz is None: tz = _get_rc_timezone() ix = int(x) dt = datetime.datetime.fromordinal(ix) remainder = float(x) - ix hour, remainder = divmod(24*remainder, 1) minute, remainder = divmod(60*remainder, 1) second, remainder = divmod(60*remainder, 1) microsecond = int(1e6*remainder) if microsecond<10: microsecond=0 # compensate for rounding errors dt = datetime.datetime( dt.year, dt.month, dt.day, int(hour), int(minute), int(second), microsecond, tzinfo=UTC).astimezone(tz)
if microsecond>999990: # compensate for rounding errors dt += datetime.timedelta(microseconds=1e6-microsecond)
return dt
class strpdate2num: """ Use this class to parse date strings to matplotlib datenums when you know the date format string of the date you are parsing. See :file:`examples/load_demo.py`. """ def __init__(self, fmt): """ fmt: any valid strptime format is supported """ self.fmt = fmt
def __call__(self, s): """s : string to be converted return value: a date2num float """ return date2num(datetime.datetime(*time.strptime(s, self.fmt)[:6]))
def datestr2num(d): """ Convert a date string to a datenum using :func:`dateutil.parser.parse`. *d* can be a single string or a sequence of strings. """ if cbook.is_string_like(d): dt = dateutil.parser.parse(d) return date2num(dt) else: return date2num([dateutil.parser.parse(s) for s in d])
def date2num(d): """ *d* is either a :class:`datetime` instance or a sequence of datetimes.
Return value is a floating point number (or sequence of floats) which gives number of days (fraction part represents hours, minutes, seconds) since 0001-01-01 00:00:00 UTC. """ if not cbook.iterable(d): return _to_ordinalf(d) else: return np.asarray([_to_ordinalf(val) for val in d])
def julian2num(j): 'Convert a Julian date (or sequence) to a matplotlib date (or sequence).' if cbook.iterable(j): j = np.asarray(j) return j + 1721425.5
def num2julian(n): 'Convert a matplotlib date (or sequence) to a Julian date (or sequence).' if cbook.iterable(n): n = np.asarray(n) return n - 1721425.5
def num2date(x, tz=None): """ *x* is a float value which gives number of days (fraction part represents hours, minutes, seconds) since 0001-01-01 00:00:00 UTC.
Return value is a :class:`datetime` instance in timezone *tz* (default to rcparams TZ value).
If *x* is a sequence, a sequence of :class:`datetime` objects will be returned. """ if tz is None: tz = _get_rc_timezone() if not cbook.iterable(x): return _from_ordinalf(x, tz) else: return [_from_ordinalf(val, tz) for val in x]
def drange(dstart, dend, delta): """ Return a date range as float Gregorian ordinals. *dstart* and *dend* are :class:`datetime` instances. *delta* is a :class:`datetime.timedelta` instance. """ step = (delta.days + delta.seconds/SECONDS_PER_DAY + delta.microseconds/MUSECONDS_PER_DAY) f1 = _to_ordinalf(dstart) f2 = _to_ordinalf(dend) return np.arange(f1, f2, step)
### date tickers and formatters ###
class DateFormatter(ticker.Formatter): """ Tick location is seconds since the epoch. Use a :func:`strftime` format string.
Python only supports :mod:`datetime` :func:`strftime` formatting for years greater than 1900. Thanks to Andrew Dalke, Dalke Scientific Software who contributed the :func:`strftime` code below to include dates earlier than this year. """
illegal_s = re.compile(r"((^|[^%])(%%)*%s)")
def __init__(self, fmt, tz=None): """ *fmt* is an :func:`strftime` format string; *tz* is the :class:`tzinfo` instance. """ if tz is None: tz = _get_rc_timezone() self.fmt = fmt self.tz = tz
def __call__(self, x, pos=0): dt = num2date(x, self.tz) return self.strftime(dt, self.fmt)
def set_tzinfo(self, tz): self.tz = tz
def _findall(self, text, substr): # Also finds overlaps sites = [] i = 0 while 1: j = text.find(substr, i) if j == -1: break sites.append(j) i=j+1 return sites
# Dalke: I hope I did this math right. Every 28 years the # calendar repeats, except through century leap years excepting # the 400 year leap years. But only if you're using the Gregorian # calendar.
def strftime(self, dt, fmt): fmt = self.illegal_s.sub(r"\1", fmt) fmt = fmt.replace("%s", "s") if dt.year > 1900: return cbook.unicode_safe(dt.strftime(fmt))
year = dt.year # For every non-leap year century, advance by # 6 years to get into the 28-year repeat cycle delta = 2000 - year off = 6*(delta // 100 + delta // 400) year = year + off
# Move to around the year 2000 year = year + ((2000 - year)//28)*28 timetuple = dt.timetuple() s1 = time.strftime(fmt, (year,) + timetuple[1:]) sites1 = self._findall(s1, str(year))
s2 = time.strftime(fmt, (year+28,) + timetuple[1:]) sites2 = self._findall(s2, str(year+28))
sites = [] for site in sites1: if site in sites2: sites.append(site)
s = s1 syear = "%4d" % (dt.year,) for site in sites: s = s[:site] + syear + s[site+4:]
return cbook.unicode_safe(s)
class IndexDateFormatter(ticker.Formatter): """ Use with :class:`~matplotlib.ticker.IndexLocator` to cycle format strings by index. """ def __init__(self, t, fmt, tz=None): """ *t* is a sequence of dates (floating point days). *fmt* is a :func:`strftime` format string. """ if tz is None: tz = _get_rc_timezone() self.t = t self.fmt = fmt self.tz = tz
def __call__(self, x, pos=0): 'Return the label for time *x* at position *pos*' ind = int(round(x)) if ind>=len(self.t) or ind<=0: return ''
dt = num2date(self.t[ind], self.tz)
return cbook.unicode_safe(dt.strftime(self.fmt))
class AutoDateFormatter(ticker.Formatter): """ This class attempts to figure out the best format to use. This is most useful when used with the :class:`AutoDateLocator`. """
# This can be improved by providing some user-level direction on # how to choose the best format (precedence, etc...)
# Perhaps a 'struct' that has a field for each time-type where a # zero would indicate "don't show" and a number would indicate # "show" with some sort of priority. Same priorities could mean # show all with the same priority.
# Or more simply, perhaps just a format string for each # possibility...
def __init__(self, locator, tz=None): self._locator = locator self._formatter = DateFormatter("%b %d %Y %H:%M:%S %Z", tz) self._tz = tz
def __call__(self, x, pos=0): scale = float( self._locator._get_unit() )
if ( scale == 365.0 ): self._formatter = DateFormatter("%Y", self._tz) elif ( scale == 30.0 ): self._formatter = DateFormatter("%b %Y", self._tz) elif ( (scale == 1.0) or (scale == 7.0) ): self._formatter = DateFormatter("%b %d %Y", self._tz) elif ( scale == (1.0/24.0) ): self._formatter = DateFormatter("%H:%M:%S %Z", self._tz) elif ( scale == (1.0/(24*60)) ): self._formatter = DateFormatter("%H:%M:%S %Z", self._tz) elif ( scale == (1.0/(24*3600)) ): self._formatter = DateFormatter("%H:%M:%S %Z", self._tz) else: self._formatter = DateFormatter("%b %d %Y %H:%M:%S %Z", self._tz)
return self._formatter(x, pos)
class rrulewrapper:
def __init__(self, freq, **kwargs): self._construct = kwargs.copy() self._construct["freq"] = freq self._rrule = rrule(**self._construct)
def set(self, **kwargs): self._construct.update(kwargs) self._rrule = rrule(**self._construct)
def __getattr__(self, name): if name in self.__dict__: return self.__dict__[name] return getattr(self._rrule, name)
class DateLocator(ticker.Locator): hms0d = {'byhour':0, 'byminute':0,'bysecond':0} def __init__(self, tz=None): """ *tz* is a :class:`tzinfo` instance. """ if tz is None: tz = _get_rc_timezone() self.tz = tz
def set_tzinfo(self, tz): self.tz = tz
def datalim_to_dt(self): dmin, dmax = self.axis.get_data_interval() return num2date(dmin, self.tz), num2date(dmax, self.tz)
def viewlim_to_dt(self): vmin, vmax = self.axis.get_view_interval() return num2date(vmin, self.tz), num2date(vmax, self.tz)
def _get_unit(self): """ Return how many days a unit of the locator is; used for intelligent autoscaling. """ return 1
def nonsingular(self, vmin, vmax): unit = self._get_unit() vmin -= 2*unit vmax += 2*unit return vmin, vmax
class RRuleLocator(DateLocator): # use the dateutil rrule instance
def __init__(self, o, tz=None): DateLocator.__init__(self, tz) self.rule = o
def __call__(self): # if no data have been set, this will tank with a ValueError try: dmin, dmax = self.viewlim_to_dt() except ValueError: return []
if dmin>dmax: dmax, dmin = dmin, dmax delta = relativedelta(dmax, dmin)
# We need to cap at the endpoints of valid datetime try: start = dmin - delta except ValueError: start = _from_ordinalf( 1.0 )
try: stop = dmax + delta except ValueError: # The magic number! stop = _from_ordinalf( 3652059.9999999 )
self.rule.set(dtstart=start, until=stop) dates = self.rule.between(dmin, dmax, True) return date2num(dates)
def _get_unit(self): """ Return how many days a unit of the locator is; used for intelligent autoscaling. """ freq = self.rule._rrule._freq if ( freq == YEARLY ): return 365 elif ( freq == MONTHLY ): return 30 elif ( freq == WEEKLY ): return 7 elif ( freq == DAILY ): return 1 elif ( freq == HOURLY ): return (1.0/24.0) elif ( freq == MINUTELY ): return (1.0/(24*60)) elif ( freq == SECONDLY ): return (1.0/(24*3600)) else: # error return -1 #or should this just return '1'?
def autoscale(self): """ Set the view limits to include the data range. """ dmin, dmax = self.datalim_to_dt() if dmin>dmax: dmax, dmin = dmin, dmax
delta = relativedelta(dmax, dmin)
# We need to cap at the endpoints of valid datetime try: start = dmin - delta except ValueError: start = _from_ordinalf( 1.0 )
try: stop = dmax + delta except ValueError: # The magic number! stop = _from_ordinalf( 3652059.9999999 )
self.rule.set(dtstart=start, until=stop) dmin, dmax = self.datalim_to_dt()
vmin = self.rule.before(dmin, True) if not vmin: vmin=dmin
vmax = self.rule.after(dmax, True) if not vmax: vmax=dmax
vmin = date2num(vmin) vmax = date2num(vmax)
return self.nonsingular(vmin, vmax)
class AutoDateLocator(DateLocator): """ On autoscale, this class picks the best :class:`MultipleDateLocator` to set the view limits and the tick locations. """ def __init__(self, tz=None): DateLocator.__init__(self, tz) self._locator = YearLocator() self._freq = YEARLY
def __call__(self): 'Return the locations of the ticks' self.refresh() return self._locator()
def set_axis(self, axis): DateLocator.set_axis(self, axis) self._locator.set_axis(axis)
def refresh(self): 'Refresh internal information based on current limits.' dmin, dmax = self.viewlim_to_dt() self._locator = self.get_locator(dmin, dmax)
def _get_unit(self): if ( self._freq == YEARLY ): return 365.0 elif ( self._freq == MONTHLY ): return 30.0 elif ( self._freq == WEEKLY ): return 7.0 elif ( self._freq == DAILY ): return 1.0 elif ( self._freq == HOURLY ): return 1.0/24 elif ( self._freq == MINUTELY ): return 1.0/(24*60) elif ( self._freq == SECONDLY ): return 1.0/(24*3600) else: # error return -1
def autoscale(self): 'Try to choose the view limits intelligently.' dmin, dmax = self.datalim_to_dt() self._locator = self.get_locator(dmin, dmax) return self._locator.autoscale()
def get_locator(self, dmin, dmax): 'Pick the best locator based on a distance.'
delta = relativedelta(dmax, dmin)
numYears = (delta.years * 1.0) numMonths = (numYears * 12.0) + delta.months numDays = (numMonths * 31.0) + delta.days numHours = (numDays * 24.0) + delta.hours numMinutes = (numHours * 60.0) + delta.minutes numSeconds = (numMinutes * 60.0) + delta.seconds
numticks = 5
# self._freq = YEARLY interval = 1 bymonth = 1 bymonthday = 1 byhour = 0 byminute = 0 bysecond = 0
if ( numYears >= numticks ): self._freq = YEARLY elif ( numMonths >= numticks ): self._freq = MONTHLY bymonth = range(1, 13) if ( (0 <= numMonths) and (numMonths <= 14) ): interval = 1 # show every month elif ( (15 <= numMonths) and (numMonths <= 29) ): interval = 3 # show every 3 months elif ( (30 <= numMonths) and (numMonths <= 44) ): interval = 4 # show every 4 months else: # 45 <= numMonths <= 59 interval = 6 # show every 6 months elif ( numDays >= numticks ): self._freq = DAILY bymonth = None bymonthday = range(1, 32) if ( (0 <= numDays) and (numDays <= 9) ): interval = 1 # show every day elif ( (10 <= numDays) and (numDays <= 19) ): interval = 2 # show every 2 days elif ( (20 <= numDays) and (numDays <= 49) ): interval = 3 # show every 3 days elif ( (50 <= numDays) and (numDays <= 99) ): interval = 7 # show every 1 week else: # 100 <= numDays <= ~150 interval = 14 # show every 2 weeks elif ( numHours >= numticks ): self._freq = HOURLY bymonth = None bymonthday = None byhour = range(0, 24) # show every hour if ( (0 <= numHours) and (numHours <= 14) ): interval = 1 # show every hour elif ( (15 <= numHours) and (numHours <= 30) ): interval = 2 # show every 2 hours elif ( (30 <= numHours) and (numHours <= 45) ): interval = 3 # show every 3 hours elif ( (45 <= numHours) and (numHours <= 68) ): interval = 4 # show every 4 hours elif ( (68 <= numHours) and (numHours <= 90) ): interval = 6 # show every 6 hours else: # 90 <= numHours <= 120 interval = 12 # show every 12 hours elif ( numMinutes >= numticks ): self._freq = MINUTELY bymonth = None bymonthday = None byhour = None byminute = range(0, 60) if ( numMinutes > (10.0 * numticks) ): interval = 10 # end if elif ( numSeconds >= numticks ): self._freq = SECONDLY bymonth = None bymonthday = None byhour = None byminute = None bysecond = range(0, 60) if ( numSeconds > (10.0 * numticks) ): interval = 10 # end if else: # do what? # microseconds as floats, but floats from what reference point? pass
rrule = rrulewrapper( self._freq, interval=interval, \ dtstart=dmin, until=dmax, \ bymonth=bymonth, bymonthday=bymonthday, \ byhour=byhour, byminute = byminute, \ bysecond=bysecond )
locator = RRuleLocator(rrule, self.tz) locator.set_axis(self.axis)
locator.set_view_interval(*self.axis.get_view_interval()) locator.set_data_interval(*self.axis.get_data_interval()) return locator
class YearLocator(DateLocator): """ Make ticks on a given day of each year that is a multiple of base.
Examples::
# Tick every year on Jan 1st locator = YearLocator()
# Tick every 5 years on July 4th locator = YearLocator(5, month=7, day=4) """ def __init__(self, base=1, month=1, day=1, tz=None): """ Mark years that are multiple of base on a given month and day (default jan 1). """ DateLocator.__init__(self, tz) self.base = ticker.Base(base) self.replaced = { 'month' : month, 'day' : day, 'hour' : 0, 'minute' : 0, 'second' : 0, 'tzinfo' : tz }
def _get_unit(self): """ Return how many days a unit of the locator is; used for intelligent autoscaling. """ return 365
def __call__(self): dmin, dmax = self.viewlim_to_dt() ymin = self.base.le(dmin.year) ymax = self.base.ge(dmax.year)
ticks = [dmin.replace(year=ymin, **self.replaced)] while 1: dt = ticks[-1] if dt.year>=ymax: return date2num(ticks) year = dt.year + self.base.get_base() ticks.append(dt.replace(year=year, **self.replaced))
def autoscale(self): """ Set the view limits to include the data range. """ dmin, dmax = self.datalim_to_dt()
ymin = self.base.le(dmin.year) ymax = self.base.ge(dmax.year) vmin = dmin.replace(year=ymin, **self.replaced) vmax = dmax.replace(year=ymax, **self.replaced)
vmin = date2num(vmin) vmax = date2num(vmax) return self.nonsingular(vmin, vmax)
class MonthLocator(RRuleLocator): """ Make ticks on occurances of each month month, eg 1, 3, 12. """ def __init__(self, bymonth=None, bymonthday=1, interval=1, tz=None): """ Mark every month in *bymonth*; *bymonth* can be an int or sequence. Default is ``range(1,13)``, i.e. every month.
*interval* is the interval between each iteration. For example, if ``interval=2``, mark every second occurance. """ if bymonth is None: bymonth=range(1,13) o = rrulewrapper(MONTHLY, bymonth=bymonth, bymonthday=bymonthday, interval=interval, **self.hms0d) RRuleLocator.__init__(self, o, tz)
def _get_unit(self): """ Return how many days a unit of the locator is; used for intelligent autoscaling. """ return 30
class WeekdayLocator(RRuleLocator): """ Make ticks on occurances of each weekday. """
def __init__(self, byweekday=1, interval=1, tz=None): """ Mark every weekday in *byweekday*; *byweekday* can be a number or sequence.
Elements of *byweekday* must be one of MO, TU, WE, TH, FR, SA, SU, the constants from :mod:`dateutils.rrule`.
*interval* specifies the number of weeks to skip. For example, ``interval=2`` plots every second week. """ o = rrulewrapper(DAILY, byweekday=byweekday, interval=interval, **self.hms0d) RRuleLocator.__init__(self, o, tz)
def _get_unit(self): """ return how many days a unit of the locator is; used for intelligent autoscaling. """ return 7
class DayLocator(RRuleLocator): """ Make ticks on occurances of each day of the month. For example, 1, 15, 30. """ def __init__(self, bymonthday=None, interval=1, tz=None): """ Mark every day in *bymonthday*; *bymonthday* can be an int or sequence.
Default is to tick every day of the month: ``bymonthday=range(1,32)`` """ if bymonthday is None: bymonthday=range(1,32) o = rrulewrapper(DAILY, bymonthday=bymonthday, interval=interval, **self.hms0d) RRuleLocator.__init__(self, o, tz)
def _get_unit(self): """ Return how many days a unit of the locator is; used for intelligent autoscaling. """ return 1
class HourLocator(RRuleLocator): """ Make ticks on occurances of each hour. """ def __init__(self, byhour=None, interval=1, tz=None): """ Mark every hour in *byhour*; *byhour* can be an int or sequence. Default is to tick every hour: ``byhour=range(24)``
*interval* is the interval between each iteration. For example, if ``interval=2``, mark every second occurrence. """ if byhour is None: byhour=range(24) rule = rrulewrapper(HOURLY, byhour=byhour, interval=interval, byminute=0, bysecond=0) RRuleLocator.__init__(self, rule, tz)
def _get_unit(self): """ return how many days a unit of the locator is; use for intelligent autoscaling """ return 1/24.
class MinuteLocator(RRuleLocator): """ Make ticks on occurances of each minute. """ def __init__(self, byminute=None, interval=1, tz=None): """ Mark every minute in *byminute*; *byminute* can be an int or sequence. Default is to tick every minute: ``byminute=range(60)``
*interval* is the interval between each iteration. For example, if ``interval=2``, mark every second occurrence. """ if byminute is None: byminute=range(60) rule = rrulewrapper(MINUTELY, byminute=byminute, interval=interval, bysecond=0) RRuleLocator.__init__(self, rule, tz)
def _get_unit(self): """ Return how many days a unit of the locator is; used for intelligent autoscaling. """ return 1./(24*60)
class SecondLocator(RRuleLocator): """ Make ticks on occurances of each second. """ def __init__(self, bysecond=None, interval=1, tz=None): """ Mark every second in *bysecond*; *bysecond* can be an int or sequence. Default is to tick every second: ``bysecond = range(60)``
*interval* is the interval between each iteration. For example, if ``interval=2``, mark every second occurrence.
""" if bysecond is None: bysecond=range(60) rule = rrulewrapper(SECONDLY, bysecond=bysecond, interval=interval) RRuleLocator.__init__(self, rule, tz)
def _get_unit(self): """ Return how many days a unit of the locator is; used for intelligent autoscaling. """ return 1./(24*60*60)
def _close_to_dt(d1, d2, epsilon=5): 'Assert that datetimes *d1* and *d2* are within *epsilon* microseconds.' delta = d2-d1 mus = abs(delta.days*MUSECONDS_PER_DAY + delta.seconds*1e6 + delta.microseconds) assert(mus<epsilon)
def _close_to_num(o1, o2, epsilon=5): 'Assert that float ordinals *o1* and *o2* are within *epsilon* microseconds.' delta = abs((o2-o1)*MUSECONDS_PER_DAY) assert(delta<epsilon)
def epoch2num(e): """ Convert an epoch or sequence of epochs to the new date format, that is days since 0001. """ spd = 24.*3600. return 719163 + np.asarray(e)/spd
def num2epoch(d): """ Convert days since 0001 to epoch. *d* can be a number or sequence. """ spd = 24.*3600. return (np.asarray(d)-719163)*spd
def mx2num(mxdates): """ Convert mx :class:`datetime` instance (or sequence of mx instances) to the new date format. """ scalar = False if not cbook.iterable(mxdates): scalar = True mxdates = [mxdates] ret = epoch2num([m.ticks() for m in mxdates]) if scalar: return ret[0] else: return ret
def date_ticker_factory(span, tz=None, numticks=5): """ Create a date locator with *numticks* (approx) and a date formatter for *span* in days. Return value is (locator, formatter). """
if span==0: span = 1/24.
minutes = span*24*60 hours = span*24 days = span weeks = span/7. months = span/31. # approx years = span/365.
if years>numticks: locator = YearLocator(int(years/numticks), tz=tz) # define fmt = '%Y' elif months>numticks: locator = MonthLocator(tz=tz) fmt = '%b %Y' elif weeks>numticks: locator = WeekdayLocator(tz=tz) fmt = '%a, %b %d' elif days>numticks: locator = DayLocator(interval=int(math.ceil(days/numticks)), tz=tz) fmt = '%b %d' elif hours>numticks: locator = HourLocator(interval=int(math.ceil(hours/numticks)), tz=tz) fmt = '%H:%M\n%b %d' elif minutes>numticks: locator = MinuteLocator(interval=int(math.ceil(minutes/numticks)), tz=tz) fmt = '%H:%M:%S' else: locator = MinuteLocator(tz=tz) fmt = '%H:%M:%S'
formatter = DateFormatter(fmt, tz=tz) return locator, formatter
def seconds(s): 'Return seconds as days.' return float(s)/SEC_PER_DAY
def minutes(m): 'Return minutes as days.' return float(m)/MINUTES_PER_DAY
def hours(h): 'Return hours as days.' return h/24.
def weeks(w): 'Return weeks as days.' return w*7.
class DateConverter(units.ConversionInterface): """The units are equivalent to the timezone."""
@staticmethod def axisinfo(unit, axis): 'return the unit AxisInfo' # make sure that the axis does not start at 0 if axis: ax = axis.axes
if axis is ax.get_xaxis(): xmin, xmax = ax.dataLim.intervalx if xmin==0.: # no data has been added - let's set the default datalim. # We should probably use a better proxy for the datalim # have been updated than the ignore setting dmax = today = datetime.date.today() dmin = today-datetime.timedelta(days=10)
ax._process_unit_info(xdata=(dmin, dmax)) dmin, dmax = ax.convert_xunits([dmin, dmax])
ax.viewLim.intervalx = dmin, dmax ax.dataLim.intervalx = dmin, dmax elif axis is ax.get_yaxis(): ymin, ymax = ax.dataLim.intervaly if ymin==0.: # no data has been added - let's set the default datalim. # We should probably use a better proxy for the datalim # have been updated than the ignore setting dmax = today = datetime.date.today() dmin = today-datetime.timedelta(days=10)
ax._process_unit_info(ydata=(dmin, dmax)) dmin, dmax = ax.convert_yunits([dmin, dmax])
ax.viewLim.intervaly = dmin, dmax ax.dataLim.intervaly = dmin, dmax
majloc = AutoDateLocator(tz=unit) majfmt = AutoDateFormatter(majloc, tz=unit) return units.AxisInfo( majloc=majloc, majfmt=majfmt, label='' )
@staticmethod def convert(value, unit, axis): if units.ConversionInterface.is_numlike(value): return value return date2num(value)
@staticmethod def default_units(x, axis): 'Return the default unit for *x* or None' return None
units.registry[datetime.date] = DateConverter() units.registry[datetime.datetime] = DateConverter()
if __name__=='__main__':
#tz = None tz = pytz.timezone('US/Pacific') #tz = UTC
dt = datetime.datetime(1011, 10, 9, 13, 44, 22, 101010, tzinfo=tz) x = date2num(dt) _close_to_dt(dt, num2date(x, tz))
#tz = _get_rc_timezone()
d1 = datetime.datetime( 2000, 3, 1, tzinfo=tz) d2 = datetime.datetime( 2000, 3, 5, tzinfo=tz)
#d1 = datetime.datetime( 2002, 1, 5, tzinfo=tz) #d2 = datetime.datetime( 2003, 12, 1, tzinfo=tz) delta = datetime.timedelta(hours=6) dates = drange(d1, d2, delta)
# MGDTODO: Broken on transforms branch #print 'orig', d1 #print 'd2n and back', num2date(date2num(d1), tz) from _transforms import Value, Interval v1 = Value(date2num(d1)) v2 = Value(date2num(d2)) dlim = Interval(v1,v2) vlim = Interval(v1,v2)
#locator = HourLocator(byhour=(3,15), tz=tz) #locator = MinuteLocator(byminute=(15,30,45), tz=tz) #locator = YearLocator(base=5, month=7, day=4, tz=tz) #locator = MonthLocator(bymonthday=15) locator = DayLocator(tz=tz) locator.set_data_interval(dlim) locator.set_view_interval(vlim) dmin, dmax = locator.autoscale() vlim.set_bounds(dmin, dmax) ticks = locator()
fmt = '%Y-%m-%d %H:%M:%S %Z' formatter = DateFormatter(fmt, tz)
#for t in ticks: print formatter(t)
for t in dates: print formatter(t)
|