Viewing file: atomic_2.h (12.48 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
// -*- C++ -*- header.
// Copyright (C) 2008, 2009 // Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version.
// This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // <http://www.gnu.org/licenses/>.
/** @file bits/atomic_2.h * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */
#ifndef _GLIBCXX_ATOMIC_2_H #define _GLIBCXX_ATOMIC_2_H 1
#pragma GCC system_header
// _GLIBCXX_BEGIN_NAMESPACE(std)
// 2 == __atomic2 == Always lock-free // Assumed: // _GLIBCXX_ATOMIC_BUILTINS_1 // _GLIBCXX_ATOMIC_BUILTINS_2 // _GLIBCXX_ATOMIC_BUILTINS_4 // _GLIBCXX_ATOMIC_BUILTINS_8 namespace __atomic2 { /// atomic_flag struct atomic_flag : public __atomic_flag_base { atomic_flag() = default; ~atomic_flag() = default; atomic_flag(const atomic_flag&) = delete; atomic_flag& operator=(const atomic_flag&) = delete;
// Conversion to ATOMIC_FLAG_INIT. atomic_flag(bool __i): __atomic_flag_base({ __i }) { }
bool test_and_set(memory_order __m = memory_order_seq_cst) volatile { // Redundant synchronize if built-in for lock is a full barrier. if (__m != memory_order_acquire && __m != memory_order_acq_rel) __sync_synchronize(); return __sync_lock_test_and_set(&_M_i, 1); }
void clear(memory_order __m = memory_order_seq_cst) volatile { __glibcxx_assert(__m != memory_order_consume); __glibcxx_assert(__m != memory_order_acquire); __glibcxx_assert(__m != memory_order_acq_rel);
__sync_lock_release(&_M_i); if (__m != memory_order_acquire && __m != memory_order_acq_rel) __sync_synchronize(); } };
/// 29.4.2, address types struct atomic_address { private: void* _M_i;
public: atomic_address() = default; ~atomic_address() = default; atomic_address(const atomic_address&) = delete; atomic_address& operator=(const atomic_address&) = delete;
atomic_address(void* __v) { _M_i = __v; }
bool is_lock_free() const volatile { return true; }
void store(void* __v, memory_order __m = memory_order_seq_cst) volatile { __glibcxx_assert(__m != memory_order_acquire); __glibcxx_assert(__m != memory_order_acq_rel); __glibcxx_assert(__m != memory_order_consume);
if (__m == memory_order_relaxed) _M_i = __v; else { // write_mem_barrier(); _M_i = __v; if (__m == memory_order_seq_cst) __sync_synchronize(); } }
void* load(memory_order __m = memory_order_seq_cst) const volatile { __glibcxx_assert(__m != memory_order_release); __glibcxx_assert(__m != memory_order_acq_rel);
__sync_synchronize(); void* __ret = _M_i; __sync_synchronize(); return __ret; }
void* exchange(void* __v, memory_order __m = memory_order_seq_cst) volatile { // XXX built-in assumes memory_order_acquire. return __sync_lock_test_and_set(&_M_i, __v); }
bool compare_exchange_weak(void*& __v1, void* __v2, memory_order __m1, memory_order __m2) volatile { return compare_exchange_strong(__v1, __v2, __m1, __m2); }
bool compare_exchange_weak(void*& __v1, void* __v2, memory_order __m = memory_order_seq_cst) volatile { return compare_exchange_weak(__v1, __v2, __m, __calculate_memory_order(__m)); }
bool compare_exchange_strong(void*& __v1, void* __v2, memory_order __m1, memory_order __m2) volatile { __glibcxx_assert(__m2 != memory_order_release); __glibcxx_assert(__m2 != memory_order_acq_rel); __glibcxx_assert(__m2 <= __m1);
void* __v1o = __v1; void* __v1n = __sync_val_compare_and_swap(&_M_i, __v1o, __v2);
// Assume extra stores (of same value) allowed in true case. __v1 = __v1n; return __v1o == __v1n; }
bool compare_exchange_strong(void*& __v1, void* __v2, memory_order __m = memory_order_seq_cst) volatile { return compare_exchange_strong(__v1, __v2, __m, __calculate_memory_order(__m)); }
void* fetch_add(ptrdiff_t __d, memory_order __m = memory_order_seq_cst) volatile { return __sync_fetch_and_add(&_M_i, __d); }
void* fetch_sub(ptrdiff_t __d, memory_order __m = memory_order_seq_cst) volatile { return __sync_fetch_and_sub(&_M_i, __d); }
operator void*() const volatile { return load(); }
void* operator=(void* __v) // XXX volatile { store(__v); return __v; }
void* operator+=(ptrdiff_t __d) volatile { return __sync_add_and_fetch(&_M_i, __d); }
void* operator-=(ptrdiff_t __d) volatile { return __sync_sub_and_fetch(&_M_i, __d); } };
// 29.3.1 atomic integral types // For each of the integral types, define atomic_[integral type] struct // // atomic_bool bool // atomic_char char // atomic_schar signed char // atomic_uchar unsigned char // atomic_short short // atomic_ushort unsigned short // atomic_int int // atomic_uint unsigned int // atomic_long long // atomic_ulong unsigned long // atomic_llong long long // atomic_ullong unsigned long long // atomic_char16_t char16_t // atomic_char32_t char32_t // atomic_wchar_t wchar_t
// Base type. // NB: Assuming _ITp is an integral scalar type that is 1, 2, 4, or 8 bytes, // since that is what GCC built-in functions for atomic memory access work on. template<typename _ITp> struct __atomic_base { private: typedef _ITp __integral_type;
__integral_type _M_i;
public: __atomic_base() = default; ~__atomic_base() = default; __atomic_base(const __atomic_base&) = delete; __atomic_base& operator=(const __atomic_base&) = delete;
// Requires __integral_type convertible to _M_base._M_i. __atomic_base(__integral_type __i) { _M_i = __i; }
operator __integral_type() const volatile { return load(); }
__integral_type operator=(__integral_type __i) // XXX volatile { store(__i); return __i; }
__integral_type operator++(int) volatile { return fetch_add(1); }
__integral_type operator--(int) volatile { return fetch_sub(1); }
__integral_type operator++() volatile { return __sync_add_and_fetch(&_M_i, 1); }
__integral_type operator--() volatile { return __sync_sub_and_fetch(&_M_i, 1); }
__integral_type operator+=(__integral_type __i) volatile { return __sync_add_and_fetch(&_M_i, __i); }
__integral_type operator-=(__integral_type __i) volatile { return __sync_sub_and_fetch(&_M_i, __i); }
__integral_type operator&=(__integral_type __i) volatile { return __sync_and_and_fetch(&_M_i, __i); }
__integral_type operator|=(__integral_type __i) volatile { return __sync_or_and_fetch(&_M_i, __i); }
__integral_type operator^=(__integral_type __i) volatile { return __sync_xor_and_fetch(&_M_i, __i); }
bool is_lock_free() const volatile { return true; }
void store(__integral_type __i, memory_order __m = memory_order_seq_cst) volatile { __glibcxx_assert(__m != memory_order_acquire); __glibcxx_assert(__m != memory_order_acq_rel); __glibcxx_assert(__m != memory_order_consume);
if (__m == memory_order_relaxed) _M_i = __i; else { // write_mem_barrier(); _M_i = __i; if (__m == memory_order_seq_cst) __sync_synchronize(); } }
__integral_type load(memory_order __m = memory_order_seq_cst) const volatile { __glibcxx_assert(__m != memory_order_release); __glibcxx_assert(__m != memory_order_acq_rel);
__sync_synchronize(); __integral_type __ret = _M_i; __sync_synchronize(); return __ret; }
__integral_type exchange(__integral_type __i, memory_order __m = memory_order_seq_cst) volatile { // XXX built-in assumes memory_order_acquire. return __sync_lock_test_and_set(&_M_i, __i); }
bool compare_exchange_weak(__integral_type& __i1, __integral_type __i2, memory_order __m1, memory_order __m2) volatile { return compare_exchange_strong(__i1, __i2, __m1, __m2); }
bool compare_exchange_weak(__integral_type& __i1, __integral_type __i2, memory_order __m = memory_order_seq_cst) volatile { return compare_exchange_weak(__i1, __i2, __m, __calculate_memory_order(__m)); }
bool compare_exchange_strong(__integral_type& __i1, __integral_type __i2, memory_order __m1, memory_order __m2) volatile { __glibcxx_assert(__m2 != memory_order_release); __glibcxx_assert(__m2 != memory_order_acq_rel); __glibcxx_assert(__m2 <= __m1);
__integral_type __i1o = __i1; __integral_type __i1n = __sync_val_compare_and_swap(&_M_i, __i1o, __i2);
// Assume extra stores (of same value) allowed in true case. __i1 = __i1n; return __i1o == __i1n; }
bool compare_exchange_strong(__integral_type& __i1, __integral_type __i2, memory_order __m = memory_order_seq_cst) volatile { return compare_exchange_strong(__i1, __i2, __m, __calculate_memory_order(__m)); }
__integral_type fetch_add(__integral_type __i, memory_order __m = memory_order_seq_cst) volatile { return __sync_fetch_and_add(&_M_i, __i); }
__integral_type fetch_sub(__integral_type __i, memory_order __m = memory_order_seq_cst) volatile { return __sync_fetch_and_sub(&_M_i, __i); }
__integral_type fetch_and(__integral_type __i, memory_order __m = memory_order_seq_cst) volatile { return __sync_fetch_and_and(&_M_i, __i); }
__integral_type fetch_or(__integral_type __i, memory_order __m = memory_order_seq_cst) volatile { return __sync_fetch_and_or(&_M_i, __i); }
__integral_type fetch_xor(__integral_type __i, memory_order __m = memory_order_seq_cst) volatile { return __sync_fetch_and_xor(&_M_i, __i); } };
/// atomic_bool // NB: No operators or fetch-operations for this type. struct atomic_bool { private: __atomic_base<bool> _M_base;
public: atomic_bool() = default; ~atomic_bool() = default; atomic_bool(const atomic_bool&) = delete; atomic_bool& operator=(const atomic_bool&) = delete;
atomic_bool(bool __i) : _M_base(__i) { }
bool operator=(bool __i) // XXX volatile { return _M_base.operator=(__i); }
operator bool() const volatile { return _M_base.load(); }
bool is_lock_free() const volatile { return _M_base.is_lock_free(); }
void store(bool __i, memory_order __m = memory_order_seq_cst) volatile { _M_base.store(__i, __m); }
bool load(memory_order __m = memory_order_seq_cst) const volatile { return _M_base.load(__m); }
bool exchange(bool __i, memory_order __m = memory_order_seq_cst) volatile { return _M_base.exchange(__i, __m); }
bool compare_exchange_weak(bool& __i1, bool __i2, memory_order __m1, memory_order __m2) volatile { return _M_base.compare_exchange_weak(__i1, __i2, __m1, __m2); }
bool compare_exchange_weak(bool& __i1, bool __i2, memory_order __m = memory_order_seq_cst) volatile { return _M_base.compare_exchange_weak(__i1, __i2, __m); }
bool compare_exchange_strong(bool& __i1, bool __i2, memory_order __m1, memory_order __m2) volatile { return _M_base.compare_exchange_strong(__i1, __i2, __m1, __m2); }
bool compare_exchange_strong(bool& __i1, bool __i2, memory_order __m = memory_order_seq_cst) volatile { return _M_base.compare_exchange_strong(__i1, __i2, __m); } }; } // namespace __atomic2
// _GLIBCXX_END_NAMESPACE
#endif
|