Viewing file: random_shuffle.h (17.28 KB) -rw-r--r-- Select action/file-type: (+) | (+) | (+) | Code (+) | Session (+) | (+) | SDB (+) | (+) | (+) | (+) | (+) | (+) |
// -*- C++ -*-
// Copyright (C) 2007, 2008, 2009 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the terms // of the GNU General Public License as published by the Free Software // Foundation; either version 3, or (at your option) any later // version.
// This library is distributed in the hope that it will be useful, but // WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // General Public License for more details.
// Under Section 7 of GPL version 3, you are granted additional // permissions described in the GCC Runtime Library Exception, version // 3.1, as published by the Free Software Foundation.
// You should have received a copy of the GNU General Public License and // a copy of the GCC Runtime Library Exception along with this program; // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see // <http://www.gnu.org/licenses/>.
/** @file parallel/random_shuffle.h * @brief Parallel implementation of std::random_shuffle(). * This file is a GNU parallel extension to the Standard C++ Library. */
// Written by Johannes Singler.
#ifndef _GLIBCXX_PARALLEL_RANDOM_SHUFFLE_H #define _GLIBCXX_PARALLEL_RANDOM_SHUFFLE_H 1
#include <limits> #include <bits/stl_numeric.h> #include <parallel/parallel.h> #include <parallel/random_number.h>
namespace __gnu_parallel { /** @brief Type to hold the index of a bin. * * Since many variables of this type are allocated, it should be * chosen as small as possible. */ typedef unsigned short bin_index;
/** @brief Data known to every thread participating in __gnu_parallel::parallel_random_shuffle(). */ template<typename RandomAccessIterator> struct DRandomShufflingGlobalData { typedef std::iterator_traits<RandomAccessIterator> traits_type; typedef typename traits_type::value_type value_type; typedef typename traits_type::difference_type difference_type;
/** @brief Begin iterator of the source. */ RandomAccessIterator& source;
/** @brief Temporary arrays for each thread. */ value_type** temporaries;
/** @brief Two-dimensional array to hold the thread-bin distribution. * * Dimensions (num_threads + 1) x (num_bins + 1). */ difference_type** dist;
/** @brief Start indexes of the threads' chunks. */ difference_type* starts;
/** @brief Number of the thread that will further process the corresponding bin. */ thread_index_t* bin_proc;
/** @brief Number of bins to distribute to. */ int num_bins;
/** @brief Number of bits needed to address the bins. */ int num_bits;
/** @brief Constructor. */ DRandomShufflingGlobalData(RandomAccessIterator& _source) : source(_source) { } };
/** @brief Local data for a thread participating in __gnu_parallel::parallel_random_shuffle(). */ template<typename RandomAccessIterator, typename RandomNumberGenerator> struct DRSSorterPU { /** @brief Number of threads participating in total. */ int num_threads;
/** @brief Begin index for bins taken care of by this thread. */ bin_index bins_begin;
/** @brief End index for bins taken care of by this thread. */ bin_index bins_end;
/** @brief Random seed for this thread. */ uint32 seed;
/** @brief Pointer to global data. */ DRandomShufflingGlobalData<RandomAccessIterator>* sd; };
/** @brief Generate a random number in @c [0,2^logp). * @param logp Logarithm (basis 2) of the upper range bound. * @param rng Random number generator to use. */ template<typename RandomNumberGenerator> inline int random_number_pow2(int logp, RandomNumberGenerator& rng) { return rng.genrand_bits(logp); }
/** @brief Random shuffle code executed by each thread. * @param pus Array of thread-local data records. */ template<typename RandomAccessIterator, typename RandomNumberGenerator> void parallel_random_shuffle_drs_pu(DRSSorterPU<RandomAccessIterator, RandomNumberGenerator>* pus) { typedef std::iterator_traits<RandomAccessIterator> traits_type; typedef typename traits_type::value_type value_type; typedef typename traits_type::difference_type difference_type;
thread_index_t iam = omp_get_thread_num(); DRSSorterPU<RandomAccessIterator, RandomNumberGenerator>* d = &pus[iam]; DRandomShufflingGlobalData<RandomAccessIterator>* sd = d->sd;
// Indexing: dist[bin][processor] difference_type length = sd->starts[iam + 1] - sd->starts[iam]; bin_index* oracles = new bin_index[length]; difference_type* dist = new difference_type[sd->num_bins + 1]; bin_index* bin_proc = new bin_index[sd->num_bins]; value_type** temporaries = new value_type*[d->num_threads];
// Compute oracles and count appearances. for (bin_index b = 0; b < sd->num_bins + 1; ++b) dist[b] = 0; int num_bits = sd->num_bits;
random_number rng(d->seed);
// First main loop. for (difference_type i = 0; i < length; ++i) { bin_index oracle = random_number_pow2(num_bits, rng); oracles[i] = oracle;
// To allow prefix (partial) sum. ++(dist[oracle + 1]); }
for (bin_index b = 0; b < sd->num_bins + 1; ++b) sd->dist[b][iam + 1] = dist[b];
# pragma omp barrier
# pragma omp single { // Sum up bins, sd->dist[s + 1][d->num_threads] now contains the // total number of items in bin s for (bin_index s = 0; s < sd->num_bins; ++s) __gnu_sequential::partial_sum(sd->dist[s + 1], sd->dist[s + 1] + d->num_threads + 1, sd->dist[s + 1]); }
# pragma omp barrier
sequence_index_t offset = 0, global_offset = 0; for (bin_index s = 0; s < d->bins_begin; ++s) global_offset += sd->dist[s + 1][d->num_threads];
# pragma omp barrier
for (bin_index s = d->bins_begin; s < d->bins_end; ++s) { for (int t = 0; t < d->num_threads + 1; ++t) sd->dist[s + 1][t] += offset; offset = sd->dist[s + 1][d->num_threads]; }
sd->temporaries[iam] = static_cast<value_type*>( ::operator new(sizeof(value_type) * offset));
# pragma omp barrier
// Draw local copies to avoid false sharing. for (bin_index b = 0; b < sd->num_bins + 1; ++b) dist[b] = sd->dist[b][iam]; for (bin_index b = 0; b < sd->num_bins; ++b) bin_proc[b] = sd->bin_proc[b]; for (thread_index_t t = 0; t < d->num_threads; ++t) temporaries[t] = sd->temporaries[t];
RandomAccessIterator source = sd->source; difference_type start = sd->starts[iam];
// Distribute according to oracles, second main loop. for (difference_type i = 0; i < length; ++i) { bin_index target_bin = oracles[i]; thread_index_t target_p = bin_proc[target_bin];
// Last column [d->num_threads] stays unchanged. ::new(&(temporaries[target_p][dist[target_bin + 1]++])) value_type(*(source + i + start)); }
delete[] oracles; delete[] dist; delete[] bin_proc; delete[] temporaries;
# pragma omp barrier
// Shuffle bins internally. for (bin_index b = d->bins_begin; b < d->bins_end; ++b) { value_type* begin = sd->temporaries[iam] + ((b == d->bins_begin) ? 0 : sd->dist[b][d->num_threads]), * end = sd->temporaries[iam] + sd->dist[b + 1][d->num_threads]; sequential_random_shuffle(begin, end, rng); std::copy(begin, end, sd->source + global_offset + ((b == d->bins_begin) ? 0 : sd->dist[b][d->num_threads])); }
::operator delete(sd->temporaries[iam]); }
/** @brief Round up to the next greater power of 2. * @param x Integer to round up */ template<typename T> T round_up_to_pow2(T x) { if (x <= 1) return 1; else return (T)1 << (__log2(x - 1) + 1); }
/** @brief Main parallel random shuffle step. * @param begin Begin iterator of sequence. * @param end End iterator of sequence. * @param n Length of sequence. * @param num_threads Number of threads to use. * @param rng Random number generator to use. */ template<typename RandomAccessIterator, typename RandomNumberGenerator> void parallel_random_shuffle_drs(RandomAccessIterator begin, RandomAccessIterator end, typename std::iterator_traits <RandomAccessIterator>::difference_type n, thread_index_t num_threads, RandomNumberGenerator& rng) { typedef std::iterator_traits<RandomAccessIterator> traits_type; typedef typename traits_type::value_type value_type; typedef typename traits_type::difference_type difference_type;
_GLIBCXX_CALL(n)
const _Settings& __s = _Settings::get();
if (num_threads > n) num_threads = static_cast<thread_index_t>(n);
bin_index num_bins, num_bins_cache;
#if _GLIBCXX_RANDOM_SHUFFLE_CONSIDER_L1 // Try the L1 cache first.
// Must fit into L1. num_bins_cache = std::max<difference_type>( 1, n / (__s.L1_cache_size_lb / sizeof(value_type))); num_bins_cache = round_up_to_pow2(num_bins_cache);
// No more buckets than TLB entries, power of 2 // Power of 2 and at least one element per bin, at most the TLB size. num_bins = std::min<difference_type>(n, num_bins_cache);
#if _GLIBCXX_RANDOM_SHUFFLE_CONSIDER_TLB // 2 TLB entries needed per bin. num_bins = std::min<difference_type>(__s.TLB_size / 2, num_bins); #endif num_bins = round_up_to_pow2(num_bins);
if (num_bins < num_bins_cache) { #endif // Now try the L2 cache // Must fit into L2 num_bins_cache = static_cast<bin_index>(std::max<difference_type>( 1, n / (__s.L2_cache_size / sizeof(value_type)))); num_bins_cache = round_up_to_pow2(num_bins_cache);
// No more buckets than TLB entries, power of 2. num_bins = static_cast<bin_index>( std::min(n, static_cast<difference_type>(num_bins_cache))); // Power of 2 and at least one element per bin, at most the TLB size. #if _GLIBCXX_RANDOM_SHUFFLE_CONSIDER_TLB // 2 TLB entries needed per bin. num_bins = std::min( static_cast<difference_type>(__s.TLB_size / 2), num_bins); #endif num_bins = round_up_to_pow2(num_bins); #if _GLIBCXX_RANDOM_SHUFFLE_CONSIDER_L1 } #endif
num_threads = std::min<bin_index>(num_threads, num_bins);
if (num_threads <= 1) return sequential_random_shuffle(begin, end, rng);
DRandomShufflingGlobalData<RandomAccessIterator> sd(begin); DRSSorterPU<RandomAccessIterator, random_number >* pus; difference_type* starts;
# pragma omp parallel num_threads(num_threads) { thread_index_t num_threads = omp_get_num_threads(); # pragma omp single { pus = new DRSSorterPU<RandomAccessIterator, random_number> [num_threads];
sd.temporaries = new value_type*[num_threads]; sd.dist = new difference_type*[num_bins + 1]; sd.bin_proc = new thread_index_t[num_bins]; for (bin_index b = 0; b < num_bins + 1; ++b) sd.dist[b] = new difference_type[num_threads + 1]; for (bin_index b = 0; b < (num_bins + 1); ++b) { sd.dist[0][0] = 0; sd.dist[b][0] = 0; } starts = sd.starts = new difference_type[num_threads + 1]; int bin_cursor = 0; sd.num_bins = num_bins; sd.num_bits = __log2(num_bins);
difference_type chunk_length = n / num_threads, split = n % num_threads, start = 0; difference_type bin_chunk_length = num_bins / num_threads, bin_split = num_bins % num_threads; for (thread_index_t i = 0; i < num_threads; ++i) { starts[i] = start; start += (i < split) ? (chunk_length + 1) : chunk_length; int j = pus[i].bins_begin = bin_cursor;
// Range of bins for this processor. bin_cursor += (i < bin_split) ? (bin_chunk_length + 1) : bin_chunk_length; pus[i].bins_end = bin_cursor; for (; j < bin_cursor; ++j) sd.bin_proc[j] = i; pus[i].num_threads = num_threads; pus[i].seed = rng(std::numeric_limits<uint32>::max()); pus[i].sd = &sd; } starts[num_threads] = start; } //single // Now shuffle in parallel. parallel_random_shuffle_drs_pu(pus); } // parallel
delete[] starts; delete[] sd.bin_proc; for (int s = 0; s < (num_bins + 1); ++s) delete[] sd.dist[s]; delete[] sd.dist; delete[] sd.temporaries;
delete[] pus; }
/** @brief Sequential cache-efficient random shuffle. * @param begin Begin iterator of sequence. * @param end End iterator of sequence. * @param rng Random number generator to use. */ template<typename RandomAccessIterator, typename RandomNumberGenerator> void sequential_random_shuffle(RandomAccessIterator begin, RandomAccessIterator end, RandomNumberGenerator& rng) { typedef std::iterator_traits<RandomAccessIterator> traits_type; typedef typename traits_type::value_type value_type; typedef typename traits_type::difference_type difference_type;
difference_type n = end - begin; const _Settings& __s = _Settings::get();
bin_index num_bins, num_bins_cache;
#if _GLIBCXX_RANDOM_SHUFFLE_CONSIDER_L1 // Try the L1 cache first, must fit into L1. num_bins_cache = std::max<difference_type> (1, n / (__s.L1_cache_size_lb / sizeof(value_type))); num_bins_cache = round_up_to_pow2(num_bins_cache);
// No more buckets than TLB entries, power of 2 // Power of 2 and at least one element per bin, at most the TLB size num_bins = std::min(n, (difference_type)num_bins_cache); #if _GLIBCXX_RANDOM_SHUFFLE_CONSIDER_TLB // 2 TLB entries needed per bin num_bins = std::min((difference_type)__s.TLB_size / 2, num_bins); #endif num_bins = round_up_to_pow2(num_bins);
if (num_bins < num_bins_cache) { #endif // Now try the L2 cache, must fit into L2. num_bins_cache = static_cast<bin_index>(std::max<difference_type>( 1, n / (__s.L2_cache_size / sizeof(value_type)))); num_bins_cache = round_up_to_pow2(num_bins_cache);
// No more buckets than TLB entries, power of 2 // Power of 2 and at least one element per bin, at most the TLB size. num_bins = static_cast<bin_index> (std::min(n, static_cast<difference_type>(num_bins_cache)));
#if _GLIBCXX_RANDOM_SHUFFLE_CONSIDER_TLB // 2 TLB entries needed per bin num_bins = std::min<difference_type>(__s.TLB_size / 2, num_bins); #endif num_bins = round_up_to_pow2(num_bins); #if _GLIBCXX_RANDOM_SHUFFLE_CONSIDER_L1 } #endif
int num_bits = __log2(num_bins);
if (num_bins > 1) { value_type* target = static_cast<value_type*>( ::operator new(sizeof(value_type) * n)); bin_index* oracles = new bin_index[n]; difference_type* dist0 = new difference_type[num_bins + 1], * dist1 = new difference_type[num_bins + 1];
for (int b = 0; b < num_bins + 1; ++b) dist0[b] = 0;
random_number bitrng(rng(0xFFFFFFFF));
for (difference_type i = 0; i < n; ++i) { bin_index oracle = random_number_pow2(num_bits, bitrng); oracles[i] = oracle;
// To allow prefix (partial) sum. ++(dist0[oracle + 1]); }
// Sum up bins. __gnu_sequential::partial_sum(dist0, dist0 + num_bins + 1, dist0);
for (int b = 0; b < num_bins + 1; ++b) dist1[b] = dist0[b];
// Distribute according to oracles. for (difference_type i = 0; i < n; ++i) ::new(&(target[(dist0[oracles[i]])++])) value_type(*(begin + i));
for (int b = 0; b < num_bins; ++b) { sequential_random_shuffle(target + dist1[b], target + dist1[b + 1], rng); }
// Copy elements back. std::copy(target, target + n, begin);
delete[] dist0; delete[] dist1; delete[] oracles; ::operator delete(target); } else __gnu_sequential::random_shuffle(begin, end, rng); }
/** @brief Parallel random public call. * @param begin Begin iterator of sequence. * @param end End iterator of sequence. * @param rng Random number generator to use. */ template<typename RandomAccessIterator, typename RandomNumberGenerator> inline void parallel_random_shuffle(RandomAccessIterator begin, RandomAccessIterator end, RandomNumberGenerator rng = random_number()) { typedef std::iterator_traits<RandomAccessIterator> traits_type; typedef typename traits_type::difference_type difference_type; difference_type n = end - begin; parallel_random_shuffle_drs(begin, end, n, get_max_threads(), rng) ; }
}
#endif /* _GLIBCXX_PARALLEL_RANDOM_SHUFFLE_H */
|